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Abstract  

This paper provides a formative evaluation of picture-based advisories (PBA), using a cluster 

randomized trial in the states of Punjab and Haryana in northern India. The study randomly 

assigned 203 villages to one of three treatment arms: a control group, in which farmers 

received generic agricultural advisories; a PBA treatment arm, in which farmers received not 

only generic advisories but also PBA messages personalized based on smartphone images of 

their crops; and a treatment arm in which farmers received picture-based insurance (PBI) 

coverage for visible damage to insured crops in addition to the generic and PBA messages. 

We find high participation among all groups of farmers, regardless of potential digital 

divides, indicating feasibility of an inclusive PBA approach. Moreover, PBA improved 

farmers’ knowledge around good agricultural practices. Although this did not translate into 

increased adoption of recommended practices in the short run, farmers do report that the 

advisory service helps them reduce risk, providing a business case for bundling this service 

with insurance. 
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Introduction 

Improving agricultural productivity and promoting sustainable agricultural development is a pressing 

concern for developing countries with higher rates of food insecurity, malnutrition, and rural poverty. 

Despite achieving remarkable productivity growth since the 1960s and 1970s, productivity gaps between 

low-income and high-income countries persist, along with large heterogeneity across crops and regions 

(Steensland 2021). Improvements in productivity are also increasingly threatened by climate change. In 

India, for example, rising temperatures and changing rainfall patterns could reduce yields of major crops 

by as much as 10 percent by 2035 (Naresh et al. 2017). As smallholder farmers form a large proportion of 

rural poor, improving smallholders’ agricultural productivity through technology adoption has the 
potential to reduce both poverty and vulnerability to shocks, indirectly improving human development 

outcomes. Yet, adoption of recommended agricultural practices and technologies has historically been 

slow or uneven in developing countries (Sunding and Zilberman 2001). 

Past studies have found that poor access to finance, uninsured risk, and imperfect information play a 

significant role in hindering the adoption of yield-improving and resilience-enhancing technologies (Feder, 

Just, and Zilberman 1985, Foster and Rosenzweig 1995, Foster and Rosenzweig 2010, and Jack 2013 with 

an overview of the literature), perpetuating farming systems limited by low technology adoption, 

inefficient input use, and exposure to production and price risks. Farmers face uncertainty not only about 

how a new technology or agricultural practice affects yields in their field, but also about weather 

realizations during the growing season and how these interact with any new technologies they may 

consider adopting. This uncertainty prompts risk-averse farmers to make sub-optimal production 

decisions and systematically under-invest in technology, especially when faced with additional constraints 

around access to land, labor, and capital typical among smallholders (Magruder 2018).  

Extension services that transfer knowledge and promote efficient and sustainable agricultural practices 

and technologies in rural low-income settings can therefore play a crucial role in improving smallholder 

farmers’ productivity and incomes. Moreover, these services can help accelerate climate adaptation and 

the transition towards more resource-efficient production systems (World Bank 2007). Traditionally 

provided through public extension systems, extension services are increasingly relying on mobile phones. 

The recent advent of ICT, digital technologies, and big data has served to improve agricultural services, 

including extension, contributing to better outcomes around smallholder farmers’ adoption of 
recommended practices and technologies. In particular, ICTs have lowered the costs of extension and 

facilitated better communication between beneficiary farmers and extension agents, as well as with peers 

from farmers’ own social networks, enabling the dissemination of more accurate and interactive 
advisories. Nevertheless, the evidence on the impacts of agricultural extension on adoption of improved 

technologies and management practices is mixed, with both evidence showing substantial impact (de 

Janvry and Sadoulet 2020) and limited effects on technology adoption and yields (Nakasone et al 2014, 

Baumueller 2015, Deichmann et al. 2016). In a meta-analysis of six ICT based studies,   Fabregas, Kremer, 

& Schilbach (2019) find that providing mobile-based advisory on average improves the odds of a farmer 
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purchasing the recommended input by 22 percent, increases yields by approximately 4 percent, and 

provides a return on investment of up to ten times. However, they find that results are context-specific 

and could vary among farmers with different characteristics and across different advisory modes. Other 

recent evaluations of localized, interactive mobile advisories find that they improve the adoption of new 

crops and technology (Campenhout et al. 2017, Cole and Fernando 2021, Larochelle et al. 2019). However, 

advisory programs remain limited in their ability to overcome behavioral and financial barriers to adoption 

(Aker, Ghosh, and Burrell 2016). Aker (2011) notes that the effectiveness of traditional extension seems 

to have been hampered by large costs and poor reach, and by the presence of other barriers to adoption 

such as lack of access to finance or markets.  

This paper analyzes the potential for improving advisories and strengthening their impact by relying on 

smartphone technology.  In particular, it tests whether the above challenges can be overcome by moving 

towards personalized remote advisory services that tailor recommendations based on smartphone images 

of a farmer’s crops. In addition, it explores whether bundling advisory services with crop insurance can 

help reduce risk-related barriers to adoption of recommended practices and technologies. To do this, we 

rely on a novel insurance product, picture-based insurance (PBI), that minimizes basis risk by paying out 

when farmers suffer visible damage, as verified from a stream of smartphone images submitted 

throughout the entire agricultural season (see Ceballos, Kramer, and Robles 2019). 

Using a cluster randomized trial in which villages were randomly assigned into treatment and control 

groups, we evaluate the effects of a personalized advisory service on farmers’ knowledge, perceptions of 
advisories, and adoption of agricultural practices. In the control group, farmers received standard generic 

messages about good agricultural practices via SMS and interactive voice response (IVR). In the treatment 

group, in addition to generic messages, farmers received personalized advisories based on submitted 

photos of their crops. Further, half of the villages in the treatment group were randomly selected to 

receive a crop insurance policy, which paid out in case of extreme heat or visible damage to the crops.  

We find that personalized advisories improved farmers’ knowledge around good agricultural practices and 
farmers believed these to be more relevant and effective than generic advisory messages. However, 

improvements in knowledge did not translate on increased adoption of suggested practices, even though 

farmers reported that personalized advisories helped them reduce risk more than other sources of 

information that they could access. This is a relevant outcome for insurance providers, who have a direct 

incentive to reduce farmers’ risk exposure, and thus the extent of crop damage and expected payouts. 
We also observe increased willingness to pay for advisories and farmer participation —as measured from 

the number of submitted images—when advisories are bundled with the insurance product, suggesting 

that there is a business case for combining these two forms of ICT-based innovations into a picture-based 

insurance-advisory bundle. 

This paper relates to three areas in the literature. First, the paper adds to a growing literature on the 

impacts of ICT-based advisories to reduce information constraints (see, for instance, Cole and Fernando 

2021). Traditional in-person extension models are by definition personalized and perceived to be useful 

by farmers but are usually subject to a high marginal cost and many farmers lack access to them. ICT-
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based advisories, in contrast, can be delivered at a much lower cost but are often provided in the form of 

one-way generic advisories, unable to capture heterogeneity in farmer, crop, and farming practices within 

a broader geographic region. While phone-based advisories have been successfully used to deliver 

localized advisories (Cole and Fernando 2021), evidence on newer more tailored and interactive advisories 

is limited. Moving from localized messages (tailored for an average farmer in a broad geographical region) 

to personalized messages (based on a farmer’s individual situation) could make advisories more 

appropriate and relevant, and the participatory, two-way nature of these picture-based advisories could 

result in farmers paying more attention the messages.  We find that although these advisories may 

improve knowledge and self-reported satisfaction with the service, they do not necessarily lead to 

increased adoption of recommended practices and technologies. 

Second, the paper relates to a smaller literature on business models for providing ICT-based advisories. 

Given that information is a public good, an important question in the design of extension systems is who 

will be paying for the costs of designing and implementing advisory services. In this paper, we explore 

whether there is a business case for bundling advisories with insurance, with an insurance provider paying 

for the service and potentially passing on a portion of the cost to farmers. Our findings suggest that 

insurance providers could use advisories to lower farmer’s risk exposure and thereby expected insurance 

payouts, and that the provision of advisories may increase farmers’ willingness to pay and thus demand 
for insurance. At the same time, combining advisories with insurance could potentially help lower the risk 

of adoption of recommended practices, further improving the business case for bundling. Unfortunately, 

since our study did not include an insurance-only treatment arm, we cannot quantify the impacts of 

providing advisories in the context of an insurance scheme. This remains an area for future research. 

A final area of the literature related to this paper are studies addressing barriers to technology adoption 

and improved agricultural risk management through packaged interventions. Increased financial inclusion 

through, for instance, microlending and savings programs has had little success in improving investments, 

due to low take-up or to the presence of other larger constraints such as uninsured risk (Banerjee 2013, 

Karlan et al. 2014) or due to crowding out of investments (de Janvry and Sadoulet 2020). While index 

insurance can encourage farmers to plant riskier yet more profitable crops and to use more inputs, 

demand remains low (Kramer et al., 2021). Bundling mutually beneficial agricultural services can 

potentially address multiple market failures simultaneously and improve technology adoption more 

effectively. Nonetheless, most studies have focused on relaxing information constraints through 

advisories and relaxing cash constraints through either cash transfers (Ambler et al. 2020) or increasing 

access to loans (de Janvry, Sadoulet and Suri 2017). By contrast, and to the best of our knowledge, we are 

the first study to bundle a smartphone picture-based advisory service, helping relax information 

constraints, with an indemnity insurance product, in order to transfer agricultural risk. 

The paper is structured as follows. In section 2, we introduce the context in which the study was 

conducted, describe its implementation, and introduce the hypotheses that we aim to test, together with 

the methods to do so. Section 3 outlines the data used to test these hypotheses. Section 4 presents our 

findings. We conclude with a discussion of the key take-aways for program design and further research in 

section 5. 
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Section 2. Context and Methods  

2.1 Background 

To measure the effects of providing tailored picture-based agricultural advisories, we implemented a 

cluster randomized control trial in the states of Punjab and Haryana in northern India during the Rabi 

(winter) season of 2017-18. Mobile phone prevalence in India has increased exponentially in recent years, 

in line with rising incomes and mobile technology becoming more affordable. Infrastructure expansion 

has also resulted in near-universal internet coverage in most parts of the country, unlocking the potential 

for mobile phones to serve as key platforms for delivering development services to remote rural areas. 40 

percent of internet users in India are from rural areas and approximately 97 percent access the internet 

through their mobile phones (ICEA 2020).  

Punjab and Haryana are among the largest rice and wheat producing states in India. Farmers in these 

states are typically larger and wealthier than the average Indian farmer. Moreover, rural tele-density1 in 

these states is higher than in the rest of the country (65 percent in Haryana and 80 percent in Punjab, with 

57 percent being the all-India average in 2017; GoI 2018). Such a context allowed for a proof of concept 

for remote advisories involving an adequate treatment sample, providing the basis for a scalable service 

to other parts of India. 

This study was a follow-up to a project testing the feasibility of picture-based crop insurance (PBI), which 

uses farmers’ smartphone pictures of insured crops to improve the accuracy of claims settlement. An 

initial study on PBI during the Rabi season of 2016-17 in the states of Punjab and Haryana demonstrated 

the feasibility of this approach: farmers were willing and able to take usable pictures of their fields; 

agricultural experts were able to identify severe damage from these pictures; and using these expert 

assessments in claims settlement reduced the incidence of severe basis events compared to weather 

index-based insurance and area-yield index-based methods (Ceballos, Kramer, and Robles 2019).2 

In addition, farmers reported benefiting from the increased field oversight they gained from taking regular 

pictures, and on-the-ground smartphone pictures enabled remote monitoring of crop phenology, 

including detection of crop growth stages relative to satellite remote sensing methods (Hufkens et al. 

2019). This raised the question of whether the information visible in smartphone pictures could be 

extended to implement extension, using visual cues from images on growth stage and crop health to tailor 

preventive and curative advisories to individual farmers. Together with the Centre for Agriculture and 

Biosciences International (CABI), which was providing generic mobile-based advisories as part of the 

 
 
1 Defined as the number of wireline and wireless connections per 100 individuals in the Telecom Statistics India 2018 report by 
Department of Telecommunications, Govt. of India.  
2 A longer evaluation is currently underway to test the implications of reduced basis risk using smartphone pictures on insurance 
uptake and impacts. 
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Direct2Farm extension program (Kansiime et al. 2019) and interested in further tailoring these advisories, 

we decided to test the feasibility of a picture-based advisories (PBA) approach. 

2.2 Intervention 

Both PBA and PBI rely on smartphone camera pictures to deliver personalized services. To facilitate 

collection of these smartphone images from farmers, we developed a dedicated smartphone application, 

WheatCam, which was available free of charge from the Google Play Store (and is currently available 

under a more general name, KisanCam, as the project expanded to cover crops beyond wheat). As part of 

the intervention, farmers were invited to download and register themselves in this app, and they received 

a short in-person training on how to take valid pictures. Farmers could enroll one of their fields by 

registering one or more “sites” in the smartphone app, provided that the pictures taken at one site could 
capture approximately one acre of their field. During the registration process, farmers had to send in an 

initial geo-tagged and time-stamped picture for each of their registered sites. 

The WheatCam app was developed to have in-built features to enable farmers to easily send photographs 

following a predetermined picture-taking protocol (see Ceballos, Kramer, and Robles 2019). Farmers were 

asked to take pictures on a regular basis throughout the season, ideally between 10am and 2pm (to keep 

lighting conditions constant), and always from the same location with the same view angle. To facilitate 

this, the smartphone app stored the initial picture for each site and used geo-tags to check whether any 

subsequent pictures for that same site were taken at the same location as the initial picture. When taking 

a picture, the smartphone screen was showing a line to mark where in the view frame the farmers should 

keep the horizon, and in the case of a repeat picture, the app provided a “ghost” image (a partially 
transparent image of the initial picture), allowing the farmer to align static features in the landscape (such 

as distant trees or structures) with those in the initial picture. After sending in a repeat picture, a farmer 

was asked to indicate the growth stage of the crop, whether any damage had occurred since the last time 

the farmer sent in a picture (and if so, what caused the damage), and what inputs had been used. In case 

a farmer reported damage, he was prompted to take close-up pictures of his crops. 

Four local agronomists interpreted the uploaded images, including initial pictures, repeat pictures, and 

close-up pictures, and sent out personalized advisories based on predetermined cues that were visible in 

the pictures, along with additional sources of information such as weather data and regional pest 

monitoring. For this purpose, they used an online platform linked to the smartphone application that 

allowed them to accept or reject individual farmer’s pictures (according to whether the farmer followed 
the stated picture-taking protocol), review the images for visible cues to prompt specific crop 

management recommendations, and push remote advisories (PBA messages) directly through the app to 

each farmer’s phone. In addition, at the end of the season, these experts assessed the level of visible 
damage at each site using the time lapse of pictures. Assessments were made individually, and the median 

percentage of damage across experts was used as the final damage measure for that site. When large 

disagreement existed among individual assessments, we used the percentage of damage reached by 

consensus during a joint review. For farmers with more than 20 percent of assessed visible damage, 

insured farmers received payments directly into their bank accounts. 
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2.3 Experimental design 

The study was implemented by means of a cluster-randomized trial in which we grouped 203 villages from 

5 districts across Haryana and Punjab into 168 clusters of nearby villages.3 These clusters, in turn, were 

randomly assigned to one of the following three treatment arms:  

1. Control group, where we broadcasted conventional interactive voice response (IVR) and SMS 

messages (63 villages, grouped into 51 clusters);  

2. PBA treatment, where we added personalized, picture-based advisory messages to the 

broadcasting of conventional generic IVR and SMS messages (69 villages, grouped into 55 

clusters); and 

3. PBA+PBI treatment, where we provided PBI coverage on top of the IVR, SMS, and PBA messages 

(71 villages, grouped into 62 clusters). 

Thus, farmers in both treatment and control arms received generic weather and crop calendar-based 

advisory through pre-recorded IVR messages and SMS delivered to their registered mobile phones. 

Participating farmers in both treatment groups (PBA and PBA+PBI) received in addition personalized 

advisory, through either the app or SMS, when they submitted a repeat picture or contacted agronomic 

experts through the app. We randomized treatment at the village level to minimize information spillovers 

from the advisories and alleviate ethical concerns on varying access to free crop insurance individually.  

The sample of villages was drawn from areas in Haryana where our implementing organization for the 

advisories, CABI, had a prior presence under the Direct2Farm program. In addition, we retained all 50 

villages from the pilot study in Haryana and Punjab in the preceding year, which was focused on the 

feasibility of PBI (see Ceballos, Kramer, and Robles, 2019). Invited farmers in each village were free to 

choose whether they wanted to participate in the intervention based on messaging marketed through 

phone calls and local social channels including village meetings and loudspeaker announcements. They 

could enroll in the services available at their village by contacting program staff who registered farmers 

on the smartphone application in treatment villages or through a SurveyCTO form in the control villages.  

2.4 Research questions and hypotheses 

The study was designed to capture outcomes including knowledge and adoption of recommended 

practices, as well as measures related to the potential future uptake of advisory and insurance including 

willingness-to-pay and farmer satisfaction with the service. We hypothesize that picture-based advisories 

(PBA) can potentially have a larger effect on adoption than generic advisories for two reasons. 

Personalized advisories, by relying on direct visible evidence of a farmer’s crop health, may be more 
relevant and reach farmers in a timelier manner than traditional training visits or other in-person advisory 

 
 
3 This sample of 203 villages was drawn from an initial list of 250 potential study villages. Field staff were unable to recruit a 
sufficient number of farmers in 47 of these 250 potential study villages, which were therefore dropped from the study, resulting 
in the final set of 203 villages where farmers were registered. 
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modes. Secondly, if these are perceived as more relevant by the farmer, they may improve knowledge 

retention. Providing PBA in conjunction with PBI can further improve the potential for adoption.  

Our main research questions, then, are the following: 

1. Are farmers willing and able to take pictures that can be used to provide personalized remote 

advisories? Does participation in the program, measured by picture-taking activity differ by 

treatment arm and between farmers with different demographic characteristics? 

2. Does the provision of picture-based advisories improve farmer knowledge of recommended 

practices? Is the improvement in knowledge due to the medium itself (PBA vs SMS/IVR), the 

perceived relevance of the advisory, or a difference in content?  

3. Does the provision of picture-based advisories improve adoption of recommended practices?  

4. What is farmers’ willingness-to-pay for picture-based advisories and picture-based insurance? 

5. Does providing personalized insurance increase or reduce moral hazard? Does providing 

advisories have an effect on moral hazard? 

Section 3. Data, treatment balance, and empirical strategy 

3.1 Administrative data 

For our analyses, we use administrative data collected as part of the intervention, as well as primary data 

collected through a quantitative endline survey. The administrative data includes self-reported data 

collected through the Wheatcam application both at the time of enrollment and after taking a repeat 

picture through the course of the season.  In treatment villages, interested farmers had to register in the 

Wheatcam application by sharing basic demographic data, information about their crop, and by taking an 

initial image of the field they intended to enroll, with the help of program staff. In addition, after taking 

each repeat picture, a short questionnaire about inputs used and crop damage experienced since the last 

picture was automatically shown in the app. In control villages, program staff registered farmers for the 

generic advisories by means of a similar short survey administered through computer-assisted personal 

interviews (CAPI).  

Overall, 3,266 wheat farmers participated in the study, with 1,468 farmers in the control arm and 801 and 

997 farmers in, respectively, the PBA and PBA+PBI treatment arms (Table 1). All of these were male, aged 

between 18 and 88, and 74 percent identified as belonging to an upper or forward, typically landowning, 

caste (Appendix Table A1). 11 percent of farmers were already relying on their mobile phone to seek 

agricultural advisory. Appendix Table A2, column A compares basic demographic characteristics of all 

registered farmers across the three study arms. Control farmers have significantly larger land sizes and 

are on average 5 years older than treatment farmers. They are also more likely to have lower educational 

achievement, and less likely to belong to a backward caste and to receive agricultural advisory on their 

mobile phones.  By contrast, farmers in the two treatment groups are not significantly different from one 

another in terms of farmer characteristics (Appendix Table A1, column B), except for caste: farmers in 



 

 14 

PBA+PBI villages are 3 percentage points more likely to identify as a backward caste compared to those 

in PBA villages. 

3.2 Endline survey 

In our analyses, we mainly rely on the quantitative endline survey, which was administered at the end of 

the Rabi season in mid-2018. To that end, we randomly selected up to four registered farmers per village 

who had actively participated in the intervention, using the administrative data as a sampling frame.4 This 

resulted in a total sample of 812 farmers from 203 villages with registered farmers (Table 1). The total 

number of farmers surveyed at endline was lower for two reasons. First, in 13 PBA villages, 7 PBA + PBI 

villages and 20 control villages, we were unable to locate registered farmers, and thus unable to 

administer the endline survey. Second, to correct for the self-selection bias between treatment and 

control, we did not interview the full sample of farmers from control villages, but instead, surveyed a 

reduced, more comparable sample of farmers who satisfied the following two criteria: (i) owned a 

smartphone and (ii) would had been interested in registering to receive PBA if it had been offered in their 

village. Out of 162 farmers approached for the survey in control areas, only 50 farmers (31 percent) from 

26 villages met both criteria. Although reducing the effective sample size, this screening process 

succeeded in providing a more balanced sample as presented in Appendix Table A3 and A4. 

The endline survey was administered by program staff using CAPI to measure key outcome variables 

including farmers’ knowledge and adoption of best practices (e.g., input use), damage suffered during the 
season, and their satisfaction with the insurance product and advisory service. For a subset of 204 

participating farmers in Punjab, we also elicited willingness to pay for PBA services alone, PBI insurance 

alone, and a bundle of PBA and PBI. For each product, farmers were first asked to respond to a 

dichotomous choice question on whether they were willing to purchase that product at a randomly 

selected price ranging from INR 200-250 for PBA alone, and from INR 1,000-2,500 for the PBI and PBA+PBI 

products.5 When responding positively (negatively), farmers were asked an identical follow-up question 

using an offer price INR 50 higher (lower) than the initial offer price for PBA alone and INR 500 higher 

(lower) for PBI alone or the PBA+PBI bundle. Finally, farmers were asked an open-ended question on their 

maximum willingness to pay for each service or product. We also objectively measured the yields of 

treatment farmers in the endline sample through standard crop cutting experiments (CCEs).  

 
Table 1: Sample description 

 Registered for intervention Interviewed at endline 

Treatment No. of farmers No. of villages No. of farmers No. of villages 

 
 
4 Because of challenges in locating registered farmers, we were unable to administer surveys in 13 PBA villages, 7 PBA + PBI 
villages, and 20 control villages. Active farmers in treatment villages were considered as those who sent at least one repeat 
picture in Jan, Feb, and Mar 2018, for those who enrolled in Feb, one pic in Feb and Mar 2018.  
5 We set the initial ranges such that the actual product cost, if offered on a commercial basis, would fall within this range. The 
cost of providing PBA is significantly lower than the cost of providing PBI, because PBA services do not make any insurance 
payouts.  
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Control 1,468 63 50 26 

PBA 801 69 160 56 

PBA+PBI 997 71 319 64 

Total 3,266 203 529 146 
Note: This figure shows the number of farmers across the 3 treatment arms who registered in the intervention (left) and who completed an 

endline interview (right), together with the number of villages to which they belonged. The sample for the endline survey consisted of 4 

farmers per village chosen randomly from the set of registered farmers who took a minimum of two repeat pictures (in the case of the PBA 

and PBA+PBI groups) and who owned a smartphone and were interested in registering to receive PBA had it been offered (in the case of the 

control group). 

 

3.3 Empirical strategy 

We estimate the effects of PBA and PBA+PBI services by comparing outcomes between the treatment and 

control groups using both administrative and survey data. For intermediary outcomes on farmer 

participation in the treatment, captured using administrative data from the smartphone application, we 

measure the added effect of PBI by comparing the two treatment groups: PBA vs. PBA+PBI. For final 

outcomes on knowledge and adoption, captured using survey data from the smartphone application, we 

measure the effect of PBA by comparing the treatment and control groups: PBA or PBA+PBI vs. control. 

For all comparisons, we estimate the effect of treatment using ordinary least squares regressions 

controlling for basic farmer demographic characteristics (age, education, and landholding size). We also 

account for stratification in the randomization design by controlling for district fixed effects and clustering 

standard errors by location cluster. To estimate differences in willingness-to-pay for the generic IVR/SMS, 

PBA, and PBA+PBI services within farmer, we estimate a linear regression of open-ended WTP on the 

service type controlling for individual fixed effects and the randomly selected dichotomous choice prompt 

value that immediately preceded the open-ended WTP question in the endline survey. Where 

appropriate, we provide robustness checks using alternate non-linear regression techniques and using 

different outcome or covariate measures.  

Section 4. Results 

We organize the results following the research questions in Section 2.4. We first present findings around 

farmer participation in the treatment, followed by evidence on primary outcomes related to knowledge 

and adoption of recommended practices. Next, we discuss findings around willingness-to-pay and moral 

hazard. 

4.1 Participation 

To assess the feasibility of providing a picture-based advisory service, we first analyze participation. To 

that end, Table 2 provides an overview of the number of farmers reached through the different project 

activities. In total, 1,468 farmers from 63 control villages and 1,798 farmers from 140 treatment villages 

registered to receive advisories. Of those in the two treatment arms (PBA and PBA+PBI), 76 percent 

enrolled one site, 18 percent enrolled two sites, and the remaining 6 percent enrolled more than two sites 



 

 16 

in the dedicated WheatCam app. Farmers sent in a total of 9,608 images, or an average of 5.3 pictures per 

farmer, of which 88 percent were approved by project staff (meaning that they were of sufficient quality). 

These approved images were used to provide advisories.  

On average, each participating farmer received around one generic advisory message via IVR and slightly 

less than three generic advisory messages via SMS, covering a range of topics including irrigation, nutrient 

management, pest and diseases, and weed control. In addition to generic advisories, treatment farmers 

were provided with PBA messages tailored to the growth stage and any potential issues that agricultural 

experts detected from the pictures sent in by the farmer.6 We provided generic messages in both the 

control and treatment arms to enhance comparability, but as a result, personalized PBA messages are a 

minority of the messages received. They were, however, personalized to a farmer’s situation and sent 
through a different medium (WheatCam instead of SMS), potentially making these messages stand out. 

In total, 1,071 PBA messages were sent to 543 treatment farmers (or 30 percent of all treatment farmers) 

who sent in at least one repeat picture through the smartphone application. Not all treatment farmers 

received PBA messages through the app, but since only active farmers were sampled at endline, almost 

all surveyed farmers (99.2 percent) reported receiving either generic or personalized advisory messages 

sent as part of the intervention. This means that the endline survey data allow us to evaluate the effects 

of the advisory service for a sample that has been exposed to this intervention. 

 
Table 2: Implementation overview 

 Participation Advisory activity 

Treatment 

No. of 

farmers 

registered 

for 

advisory 

service 

No. of 

sites 

registered 

in the app 

No. of 

repeat 

pictures 

received 

No. of 

valid 

repeat 

pictures 

received 

Generic 

IVR 

advisories 

sent 

Generic 

SMS 

advisories 

sent 

Personalized 

PBA 

messages 

sent 

Total no. 

of 

advisories 

sent 

                  
Control 1,468 n/a n/a n/a 1,141 3,633 n/a 5,063 

PBA 801 818 2,365 2,067 502 1,460 445 2,407 

PBA+PBI 997 1,275 7,243 6,386 1,347 3,511 626 5,484 

Total 3,266 2,093 9,608 8,453 2,990 8,604 1,071 12,954 
Note: Farmers in the control group were not required to register their sites and send in pictures through the smartphone 

application, and only received generic advisories. 

 
Based on the data presented above, we find that a substantial number of farmers were able to send in 

repeat pictures of their crops with limited handholding. However, each farmer sent in about 5 pictures 

per season, indicating substantial room for improvement, which could in turn enable additional 

 
 
6 When the expert reviewing the pictures did not find a specific issue in the farmer’s field, they sent an advisory message 
thanking the farmer for sending the picture and stating that no issues were directly visible. 
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personalized advisories. An important question to consider is thus whether there are any observable 

characteristics related to the number of pictures sent in by a farmer. We address this question in Table 3, 

where we present estimates from a linear regression model in which the number of sites registered, the 

number of repeat pictures, the number of approved repeat pictures, and the average number of valid 

repeat pictures per site is regressed on a dummy variable for the PBA + PBI treatment, a set of controls, 

and district fixed effects, with standard errors clustered by randomization unit.  

 
Table 3: Farmer participation in treatment  

  (1) (2) (3) (4) 

Covariate 
No. of sites 
registered 

No. of 
repeat 
pictures 

No. of 
approved 
repeat 
pictures 

Avg. valid 
repeat 
pictures per 
site 

     

PBA+PBI Treatment 

  

0.239*** 3.968*** 3.509*** 1.742*** 

(0.047) (0.660) (0.610) (0.368)     

Farmer age: 2nd tercile  

(26-34 years) 

0.036 1.242* 1.185** 0.580* 

(0.049) (0.486) (0.450) (0.264)     

Farmer age: 3rd tercile  

(35-88 years) 

0.074 2.448** 2.222** 1.414** 

(0.057) (0.755) (0.673) (0.430)     

Farmer education: 0-10 years  

(Primary/Middle school) 

0.107 0.324 0.086 -0.342 

(0.096) (0.563) (0.520) (0.347)     

Farmer education: >14 years  

(Higher education) 

-0.087 -0.432 -0.391 -0.429 

(0.047) (0.467) (0.432) (0.274)     

Total number of acres farmed  0.009 0.045 0.045 0.038* 

(0.008) (0.033) (0.032) (0.018) 

Number of observations 1798 1798 1798 1798 

R-squared 0.098 0.173 0.168 0.166 

Standard errors in parentheses and clustered by unit of randomization (cluster). ***, **, and * indicate significance at the 1, 

5, and 10 percent critical level. Coefficients for district fixed effects and intercept hidden for readability 

 
Across all four outcome variables, farmer participation was higher when the advisory was bundled with a 

free insurance policy instead of being offered as a stand-alone service. This could be related to farmers 

having a financial interest in sending in images, as active participation was a requirement receiving future 

insurance payouts. Moreover, after controlling for age, education, and wealth, farmers in the PBA+PBI 



 

 18 

arm registered an additional 0.24 sites and sent nearly 4 pictures more on average than farmers in the 

PBA arm. While we would have expected younger, more educated, and wealthier farmers to participate 

relatively more, this is not what we found. Older farmers (26 years and above, and especially those who 

were 35 years and above) were more active compared to younger farmers (18-25 years of age). In a 

robustness check (available upon request), we find that this result holds in both the PBA only and the PBA 

+ PBI treatment arm, indicating that it is not the financial incentive provided by insurance that encourages 

older farmers to participate more. Finally, education and wealth were not associated with an increase in 

participation, suggesting that the intervention is not further aggravating a digital divide. 

Given the increased participation from farmers who were randomly selected to receive not only PBA but 

also picture-based insurance, we aim to identify patterns in take-up of insurance in Table 4. Although 

insurance was provided free of charge, universal enrollment would not be expected because farmers were 

required to provide several documents, introducing a behavioral cost that farmers would only want to 

incur if they valued the insurance product sufficiently. In PBI villages, 472 out of 997 registered farmers 

(47 percent) enrolled in insurance by submitting necessary documents to the insurance underwriter, with 

the vast majority (43 percent) enrolling one or two acres each, and a smaller number of farmers (4 

percent) enrolling larger areas, up to a maximum of seven acres.  

 
Table 4: Farmer participation in insurance 

  (1) (2) 

Variable Insured Insured area 

Farmer age: 2nd tercile 26-34 years 0.186*** -0.020  
(0.036) (0.086)    

Farmer age: 3rd tercile 35-88 years 0.280*** 0.189*  
(0.052) (0.080)    

Farmer education: 0-10 years  

(Primary/Middle school) 

-0.088* -0.037 

 
(0.037) (0.104)    

Farmer education: >14 years  

(Higher education) 

-0.041 0.032 

 
(0.035) (0.076)    

Total number of acres farmed 0.003 0.001  
(0.003) (0.003) 

Number of observations 997 472 

R-squared 0.127 0.118 
Standard errors in parentheses and clustered by unit of randomization (cluster). ***, **, and * indicate significance at the 1, 

5, and 10 percent critical level. Coefficients for district fixed effects and intercept hidden for readability. 
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Table 4 shows that insurance enrollment was significantly higher among older farmers compared to 

farmers aged 18-25 years. Although these farmers also submitted more images (Table 3), in robustness 

checks, we observed this increase in both the PBA only and the PBA + PBI treatment arm, suggesting that 

it is not the financial incentive provided by insurance that increased participation among older farmers. 

Perhaps these farmers were more interested in the picture-based methodology, and therefore both 

submitted more pictures, and enrolled in insurance more often. In Table 4, we also find lower enrollment 

among farmers with fewer years of schooling, although the coefficient is statistically significant only at 

the 10 percent level. Interestingly, larger farms are not more likely to be insured. Finally, among those 

who choose to take up insurance, we do not find major differences in the number of insured acres in 

terms of farmer’s age and education, or farm size; the insured area was higher among the oldest tercile 

of farmers, but this difference is statistically significant only at the 10 percent level.  

In sum, we find that farmers are able and willing to send in images in order to receive personalized 

advisories, though adding a financial incentive for doing so (i.e., providing a free-of-cost insurance policy) 

significantly increases participation. Participation, both in terms of taking regular pictures and enrolling in 

insurance, is higher among relatively older farmers, and not correlated with education or farm size, 

suggesting that this digital innovation is not exacerbating existing inequities in access to digital 

technologies across generations or between more versus less educated and wealthy farmers. These 

findings speak to the feasibility of providing picture-based advisories as an inclusive ICT-based innovation 

to improve knowledge and behavior, which can be boosted by bundling them with a value-added service 

such as insurance. We return to complementarities between advisories and insurance below. 

4.2 Knowledge 

We evaluated farmers’ knowledge of practices through a set of five questions, for which the answers could 
be coded as either correct or incorrect (Appendix A5). Using these measures, we create an ordinal 

knowledge score ranging from 0 (only incorrect answers) to 5 (only correct answers) for each farmer. All 

five questions pertained to content that was disseminated as part of the PBA service in treatment villages. 

We also construct an indicator for ‘common topics’ that were covered in both the personalized PBA and 

generic IVR / SMS messages. This score ranges from 0 to 3 as it is based on only three of the five knowledge 

questions. In Table 5, we compare scores obtained for these indicators in the control group versus the 

two treatment arms. 

 

On average, farmers in the control group obtained poor knowledge scores, scoring 12.8 percent on the 

full knowledge test, 16.7 percent when including only the three questions around topics covered in both 

the generic IVR/SMS and PBA messages, and 7 percent when focusing on the two questions for which 

answers were provided only through PBA messages. Treatment farmers (who received both personalized 

PBA and generic IVR/SMS messages) scored approximately 10 percentage points higher than control 

farmers, representing an increase of 78 percent in average knowledge scores. 
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Interestingly, treatment farmers score higher than control farmers even when focusing on the subset of 

topics disseminated both through PBA and generic IVR/SMS. These differences remain significant despite 

controlling for total number of advisory messages, age, education, and landholding size (Table 5).7 This 

suggests that farmers incorporate content better through the PBA approach even when this content does 

not differ from what is provided through the generic IVR messages. Although we did not formally test this 

channel, farmers may pay more attention to PBA content perhaps due to the perception that PBA is 

personalized and more relevant to them.  

 
Table 5: Farmer knowledge score at endline 

  Control Treated Difference 
Knowledge score (% correct answers) N Mean/SE N Mean/SE C vs T 
            
Total (5 questions) 50 0.128 479 0.228 -0.100*** 

 

 
[0.024] 

 
[0.015]  

      
Common topics (3 questions) 50 0.167 479 0.273 -0.106** 

 

 
[0.034] 

 
[0.016] 

 

      

PBA topics alone (2 questions) 50 0.070 479 0.162 -0.092***  

 

 
[0.030] 

 
[0.025] 

 

Standard errors, clustered by unit of randomization, are in parentheses. The value displayed for t-tests are the differences in 

the means across the groups. C vs T tests for difference in means between control farmers and treatment farmers (PBA/PBI). 

***, **, and * indicate significance at the 1, 5, and 10 percent critical level, respectively, when controlling for age, education, 

landholding size, number of advisory messages received, and district fixed effects. 

 

4.3 Adoption 

An important follow-up question is whether PBA, improving farmers’ knowledge of recommended 
technologies and practices, leads to behavioral change, reduced risk exposure, and improved productivity. 

Table 6 compares the use of recommended inputs at some point during the season (as a proxy for 

technology adoption), the incidence of damage (to capture risk exposure), and self-reported yields 

(productivity) between treatment and control farmers. Consistent with other studies on the impacts of 

agricultural advisory services (Aker, Gosh, and Burrell 2016, Fabregas, Kramer and Schilbach 2019), 

despite a positive effect of advisories on knowledge, farmers do not appear to put this knowledge into 

action. At endline, we find no significant differences between farmers in treatment and control areas in 

terms of technology adoption, based on our indicators around use of recommended herbicides, 

pesticides, and fungicides. Treatment farmers reported higher instances of damage than control farmers, 

but this was statistically significant only for pests and diseases, reported by a small minority of farmers 

 
 
7 Because knowledge scores are ordinal variables, we also estimate an ordered logit model. Results based on this model, available 
upon request, are qualitatively similar. 
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(5.8 percent in the treatment group and none in the control group). The majority of farmers only reported 

weather-related damage (63 percent in treatment and 44 percent in control), which is an exogenous 

factor unaffected by treatment. Finally, self-reported yields do not significantly differ between treatment 

and control farmers. 

 
Table 6: Farmer self-reported input use, damage and yields at endline 

 Control Treated Difference 
Variable N Mean/SE N Mean/SE C vs T 
            
Used recommended herbicide 50 0.980 479 0.873 0.107 

 

 
[0.020] 

 
[0.015] 

 

Used recommended pest/fungicide 50 0.200 479 0.242 -0.042 

 

 
[0.057] 

 
[0.020] 

 

Reported damage from pest and disease 50 0.000 479 0.058 -0.058* 

 

 
[0.000] 

 
[0.011] 

 

Reported damage from weather 50 0.440 479 0.635 -0.195 

 

 
[0.071] 

 
[0.022] 

 

Reported any damage 50 0.480 479 0.662 -0.182 

 

 
[0.071] 

 
[0.022] 

 

Self-reported yield (in Quintals Per Acre) 43 20.523 456 18.661 1.862 

 

 
[0.572] 

 
[0.191] 

 

Controls for age, education, landholding size, number of advisory messages and district fixed effects. Standard errors in 

parentheses and clustered by unit of randomization (cluster). The value displayed for t-tests are the differences in the means 

across the groups. C vs T tests for difference in means between control farmers and treatment farmers (PBA/PBI). ***, **, and * 

indicate significance at the 1, 5, and 10 percent critical level. 

 
It is possible that PBA messages do not influence the overall use of inputs throughout the season but do 

influence the timing of their application. This could be due to personalized advisories being more relevant 

or timely than generic ones (since two neighboring farmers may plant the same crop in different dates) 

or from the visible information in pictures allowing experts to identify certain symptoms sooner than the 

farmer would be able to. To explore farmers’ responsiveness to the PBA intervention more accurately, we 

relate the timing and nature of both personalized and generic advisories received by farmers to the timing 

of input application and other relevant practices. To do this, we draw on responses to an endline module 

inquiring about the number of times and rough timing (first, second, or third decal of a given calendar 

month) that the farmer irrigated or applied different inputs in their field. Using these responses, we 

construct a dataset matching reports of input use and practices to any advisory disseminated in a certain 

window prior to the date of reporting.  

In Table 7, we present OLS estimates of input use reports on advisories received in a window of 15 days 

previous to the date of the report. Input use reports and generic and personalized advisory messages 

were both classified into 4 categories – weeding or applying weedicide, applying any type of fertilizer, 

applying irrigation, and applying pesticide or fungicide. For each input use category, we estimate two 
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specifications modelling a dummy taking a value of 1 if input use was reported and 0 otherwise as 

dependent variable: considering a single dummy capturing whether a generic or personalized advisory 

message was sent encouraging the farmer to apply that input alone or considering the whole array of 

dummies on different categories, in order to identify potential complementarities between categories or 

other confounding effects. All models include fixed effects at the farmer level and time dummies for each 

decal of the season (to control for the normal timing of application for certain inputs such as irrigation or 

fertilizer). Estimates considering a window of 30 days prior to the date of reporting are presented in 

Appendix A5 as a robustness check. 

Overall, we do not find strong evidence of changes in the timing of input use in response to receiving 

generic or personalized advice. The few significant coefficients in Table 7 indicate reduced input use in 

response to receiving advice to apply other types of inputs and may reflect spurious correlations stemming 

from multiple hypothesis testing.  

Now, it is possible that farmers’ self-reported data at endline on input use throughout the season are 

affected by recall bias. As an alternative to the analyses presented above, we draw on the higher 

frequency administrative data available from farmers’ responses to questions in the Wheatcam 
smartphone application. Each time a farmer sent a repeat picture of his field, he also answered a short 

questionnaire on the inputs he had applied since the previous repeat picture. Since the number of 

observations may vary by farmer according to their level of activity in the smartphone application, we 

weight the observations by the inverse of the number of repeat pictures sent in, to provide higher weights 

to farmers with fewer repeat pictures and ensure all farmers are represented equally in the analyses. 

When following this approach, the null results reported in Table 7 persist, arguably due to the fact that 

these data tend to be much noisier than the one captured at endline. 
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Table 7: Self-reported input use and advisories received 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Variable 
Applied 
Weedicide 

Applied 
Weedicide 

Applied 
Nutrient 

Applied 
Nutrient 

Irrigated 
field 

Irrigated 
field 

Applied 
Pest/Fungicide 

Applied 
Pest/Fungicide 

                  

Weedicide advice (SMS/IVR) 0.0341 0.0497  0.0323  0.0126  -0.0536*** 

 (0.0383) (0.0407)  (0.0349)  (0.0455)  (0.0177) 

Nutrient advice (SMS/IVR)  -0.0952* 0.0656 0.0451  0.0365  0.0230 

  (0.0481) (0.0466) (0.0555)  (0.0651)  (0.0383) 

Irrigation advice (SMS/IVR)  0.0584  0.00514 0.0172 -0.0107  0.00808 

  (0.0686)  (0.0897) (0.0678) (0.0863)  (0.0479) 

Pest/Fungicide advice 

(SMS/IVR) 
 0.0199  0.0881  -0.0272 0.0106 0.0141 

 (0.0463)  (0.0594)  (0.0577) (0.0526) (0.0517) 

Weedicide advice (PBA) -0.0193 0.000737  0.0573  -0.0165  0.0478 

 (0.0393) (0.0404)  (0.0443)  (0.0485)  (0.0322) 

Nutrient advice (PBA)  -0.0251 0.0102 -0.00271  -0.0555  0.0447 

  (0.0562) (0.0603) (0.0610)  (0.0484)  (0.0446) 

Irrigation advice (PBA)  -0.161**  -0.234* -0.0478 -0.0727  -0.147 

  (0.0707)  (0.140) (0.174) (0.178)  (0.183) 

Pest/Fungicide advice (PBA)  0.141  -0.0384  0.112 0.163 0.164 

  (0.147)  (0.116)  (0.114) (0.178) (0.181) 

Number of observations 2,778 2,778 2,778 2,778 2,778 2,778 2,778 2,778 

R-squared 0.267 0.270 0.349 0.351 0.255 0.256 0.293 0.297 
Notes: Robust standard errors in parentheses. Coefficients for week-wise time dummies and intercept hidden for readability. ***, **, and * indicate significance at the 1, 

5, and 10 percent critical level, respectively. 
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4.4. Farmers’ risk exposure and asymmetric information 

A major concern for insurers is their clients’ risk exposure, as it directly determines expected payouts and 
thus the costs of providing insurance. Reducing farmers’ risk exposure, and the uncertainty around 
expected payouts introduced by asymmetric information, can increase the sustainability of insurance. 

Traditional indemnity-based crop insurance is often plagued by two problems stemming from information 

asymmetry: adverse selection, or the tendency of farmers with worse prospects being more likely to select 

into insurance, increasing risk exposure ex ante; and moral hazard, or the incentives for insured farmers 

to put in lower effort or invest sub-optimally during crop growth, with the objective to maximize their 

chance to receive a payout, resulting in increased risk exposure ex post. 

 

Providing PBA may serve to reduce the probability of information asymmetry issues arising from the 

indemnity nature of the PBI product in various ways. First, receiving more accurate advisory can help 

farmers better minimize risk by taking appropriate preventive or curative actions to reduce yield loss, 

thereby reducing the cost of preventive action and reducing moral hazard. Second, receiving personalized 

advisory directly related to the regular pictures taken in their field, farmers may have an increased 

perception of being monitored by the insurance company thereby disincentivizing them to adversely 

select into the program or commit moral hazard. Third, when farmers select into insurance not only to 

access insurance but also to access advisories, the insurance policy may attract not only farmers with an 

increased risk profile, but also low-risk farmers who are motivated to adopt good practices and 

technologies.  

Table 8: Farmer perception on advisories 

  (1) (2) (3) (4) 

  

Helped 
minimize risk 

Was tailored 
to farmer 

Helped 
minimize risk 

Was tailored 
to farmer 

     
Advisory received from intervention 0.076*** 0.096*** 0.117** 0.085** 

 (0.022) (0.019) (0.037) (0.033) 

     
Advisory received from intervention # PBI   -0.066 0.017 

   (0.045) (0.041) 

     
Constant 0.785*** 0.888*** 0.785*** 0.888*** 

 (0.011) (0.010) (0.011) (0.010) 

     
Observations 502 502 502 502 
R-squared 0.046 0.088 0.055 0.089 

 
To understand the direction of behavioral change towards or away from opportunistic behavior, we first 

study farmer’s own perception of the program. Table 8 presents a comparison of these perceptions 
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controlling for farmer fixed effects and treatment status. Most farmers reported benefiting from 

advisories in some way.  However, treatment farmers were significantly more likely to perceive advisories 

received in response to pictures as helping them minimize risk and as being tailored to their context 

compared to other advisory sources utilized during the study period. There was no difference in these 

perceptions between PBA treatment and PBA+PBI treatment farmers.  This suggests that PBA has the 

potential to disincentivize moral hazard by reducing risk and improving monitoring.  

 
Table 9: Evidence on asymmetric information concerns 

 Uninsured Insured Difference 

Variable 
N Mean/SE N Mean/SE 

Insured 
vs Non-
insured 

PBA vs 
PBA+PBI 

      
  

Reported damage from pest and disease 228 0.031 251 0.084 -0.053 -0.050 

 

 
[0.011] 

 
[0.018] 

 
 

Reported damage from weather 228 0.583 251 0.681 -0.098** -0.033 

 

 
[0.033] 

 
[0.029] 

 
 

Reported any damage 228 0.601 251 0.717 -0.116*** -0.065 

 

 
[0.033] 

 
[0.028] 

 
 

Self-reported yield (in Quintals Per Acre) 217 19.748 239 17.67 2.074*** 1.852*** 

 

 
[0.234] 

 
[0.281] 

 
 

CCE yield (in Quintals Per Acre) 166 19.251 264 19.29 -0.040 -0.433 

 

 
[0.372] 

 
[0.276] 

 
 

Detected damage from pictures (%) 148 1.811 283 3.982 -2.172 -2.453** 

  [0.519]  [0.820]   

Controlled for district fixed effects, age, education and land size. Standard errors in parenthesis clustered by unit 

of randomization. The value displayed for t-tests are the differences in the means across the groups. C vs T tests 

for difference in means between control farmers and treatment farmers (PBA/PBI). ***, **, and * indicate 

significance at the 1, 5, and 10 percent critical level. 

 
To test for the presence of adverse selection and moral hazard, a final analysis compares outcomes for 

insured farmers with those for non-insured farmers from the same set of PBA+PBI treatment villages, 

where advisories were combined with PBI. We control for village fixed effects, in order to focus on 

differences between insured and uninsured farmers within villages, thus combining the effects of adverse 

selection and moral hazard into one estimate. Table 9 presents the results. We find that insured farmers 

are more likely to report damage to their crops, especially damage due to adverse weather conditions, 

and that they report on average lower yields than non-insured farmers. While this finding could reflect 

the presence of adverse selection or moral hazard, it could also be due to a tendency to over-report 

damage or under-report yields in the hope to trigger insurance payouts. In contrast, more objective yield 

measures, collected by means of crop cutting experiments, and expert assessments of damage visible in 

the submitted smartphone pictures, show no significant differences between the insured and non-

insured. This evidence allows to conclude that, at least in the context of this study, bundling PBI with 



 

 26 

personalized remote advisories (PBA) does not seem to induce substantial adverse selection or moral 

hazard. 

4.5 Willingness to pay 

As described above, the endline survey included a module eliciting willingness to pay (WTP) for PBA, PBI, 

and a bundle of PBA and PBI. These consisted of a dichotomous choice question (with answer options 

being “yes” or “no”) in which the farmer was asked whether he was willing to purchase each product if it 

were offered for INR X, whereby X was a randomly selected offer price. For the range of predefined offer 

prices, responses to this question were negative (“no”) for all but six farmers, meaning that most 

participants were not willing to pay moderately discounted commercial rates for any of the three products 

(PBA only, PBI only, or PBA + PBI). We therefore rely on the responses to the open-ended WTP question 

for our analysis, which exhibit a higher degree of variation. Still, open-ended WTP was quite low for most 

farmers. In the case of PBA alone, only four farmers were willing to pay a strictly positive price, but average 

WTP was higher for PBI alone, at INR 223 (54 percent with a strictly positive WTP), and for PBA+PBI, at 

INR 351 (72 percent with a WTP greater than zero).  

A within-subject comparison of WTP across the three products is presented in Table 10, in which we 

estimate a model that regresses willingness to pay on dummy variables indicating the PBI only and PBI + 

PBA products (using PBA only as the reference category), and a set of control variables. As mentioned, 

although the willingness to pay for the advisory service when offered as a stand-alone service is virtually 

zero, respondents are willing to pay significantly more than zero for the PBI product, and even more when 

advisories are added to the insurance product (PBA+PBI). The WTP for the three services is not associated 

with the randomly determined, initial offer price in the dichotomous choice question (second column), or 

with key demographic characteristics of farmers when estimating the model without fixed effects (results 

available upon request).  

As a robustness check, in the third column, we present a linear mixed effects model to account for both 

covariance within subjects (correlation in error terms across different choices) and between subjects 

(correlation in error terms across respondents from the same cluster of villages). The coefficients for PBI 

and PBA+PBI remain significant, and the WTP for the bundled product remains significantly larger than 

that for PBI when offered as a stand-alone product. Overall, we find robust evidence that the WTP for a 

bundled product is higher than the WTP for insurance and advisories when offered as stand-alone 

services, indicating that farmers perceive value in receiving these products as a bundle.  

Table 10: Farmer willingness to pay 

  (1) (2) (3) 

Variable 
WTP (Open-ended, 

INR) 
WTP (Open-
ended, INR) 

WTP - Mixed 
Effects (Open-

ended, INR) 
    

PBI only 219.4*** 177. 0** 157.2** 
 (15.52) (66.20) (51.92) 



 27 

PBI+PBA 347.3*** 232.4** 
 

 (18.52) (70.67) 213.1*** 

Initial offer 
 

0.178 (59.73) 
 

 
(0.226) 

 

Initial offer * PBI 
 

-0.135 0.130 
  (0.230) (0.115) 

Initial offer * PBA+PBI  -0.095 -0.080 

  (0.229) (0.122) 

Constant 3.676 -27.31 -34.08 

 (8.849) (40.00) (59.76) 

Observations 612 612 612 

R-squared 0.345 0.366 
 

Standard errors in parentheses and clustered by farmer. ***, **, and * indicate significance at the 1, 5, and 10 percent critical 

level, respectively. Coefficients for individual and cluster fixed effects and intercept hidden for readability. 
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Conclusion  

This study describes the results from a cluster randomized controlled trial to test the effectiveness of 

tailored picture-based agricultural advisories (PBA) in the states of Punjab and Haryana, northern India, 

during the Rabi (winter) season of 2017-18. The intervention was built over an existing trial around 

picture-based insurance (PBI), a novel damage assessment approach that relies on a stream of pictures of 

farmers’ fields to validate insurance claims and trigger payouts. By reviewing pictures sent by farmers of 
their own fields, agronomic experts were able to monitor regular crop growth or identify potential issues 

and send back personalized advice, either responsive or preventive, via a text or audio message. The study 

was comprised of a control arm that received generic advisories via SMS or IVR and two treatment arms: 

one where farmers received PBA advisories in addition to generic ones, and another one where farmers 

received a free PBI insurance product on top of generic and PBA advisories. 

We find positive participation rates, with a substantial number of farmers willing and able to send in 

repeat pictures of their crops with limited handholding in order to access the personalized advisory 

service. While older farmers were more active compared to younger ones, we observe no differential 

participation related to education or wealth, suggesting that the intervention is not further aggravating 

existing digital divides.8 The PBA intervention is associated with moderate increases in knowledge, even 

on topics that were covered through both generic and personalized advisory modes. However, the 

increases in knowledge do not translate to increased adoption of recommended practices or inputs, either 

in terms of the probability of applying recommended inputs or practices at some point during the season 

or in the timing of application, as informed by high-frequency data collected throughout the season.  

Whilst contradicting findings from Cole and Fernando (2021) that advisories change practices without 

affecting knowledge, these findings are in line with those in other studies (Aker, Gosh, and Burrell 2016, 

Fabregas, Kremer, & Schilbach 2019) who find increased knowledge from advisories delivered digitally but 

no effects on adoption or productivity. Estimating such effects is nevertheless challenging. Advisories can 

have an ambiguous effect on input use, for instance inducing substitution within a given input category, 

or encouraging reduced use of chemical pesticides or herbicides for some farmers and increased use for 

others, depending on their baseline levels of use. Advisories of a preventive nature, in addition, may also 

lead to reduced input use over time as crops become healthier and less susceptible to damage. More 

detailed and longer-term data may thus be required to estimate the impact of advisories on adoption. 

Our findings also speak to the presence of synergies between advisories and insurance. Farmer 

engagement, as measured by the number of sites created and the number of repeat pictures taken 

throughout the season, was found to be stronger when PBA was bundled with a free insurance policy 

instead of being offered as a stand-alone service. WTP was also higher for PBA when offered jointly with 

insurance. Finally, farmers reported that advisories helped them minimize risk, indicating that PBA could 

provide cost-savings to insurance companies by reducing the frequency or level of agricultural losses. 

 
 
8 In other settings, where smartphone ownership is significantly lower, this finding could be different, but could be overcome by 
working through champion farmers trained to send in images on behalf of other farmers in their communities. 
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Unfortunately, in the absence of a PBI only treatment arm, our research design does not allow us to 

formally test this channel by, for instance, comparing different damage and yield measures with those 

observed when bundling PBI with PBA. Even though such a mechanism would not be expected to be strong 

in the absence of impact of PBA on adoption of recommended practices, this remains as an important 

topic for future research. 

A limitation of the picture-based advisory approach implemented as part of this study is that it relies on 

manual processing of images and inspection of farmers’ images by agricultural experts. In the small scale 
of this pilot, this was feasible, but in order to scale a service of this nature, one would need to automate 

image assessment. Ongoing work is focused on this objective. For instance, Hufkens et al. (2019) describe 

a workflow to prepare images for analysis, and to subsequently extract greenness indices, which they 

show are more informative of the onset of crucial crop growth stage compared to vegetation indices 

derived from satellite imagery. Follow-up work is showing that growth stages and different types of crop 

damage, for instance due to fertilizer shortages or weeding practices, can also be identified directly from 

the images with high accuracy using machine learning. This could help tailor advisories to the growth stage 

that is visible in images submitted by the farmer, or to any crop damage that machine learning algorithms 

may detect, in order to increase the relevance and timeliness of any recommendations sent to the farmer. 

In conclusion, this paper provides a proof of concept for personalized remote advisories provided on the 

basis of smartphone images submitted by farmers themselves. This interactive approach could be a 

strategy to increase knowledge of good agricultural practices and technologies, and if bundled with 

insurance, increase farmers’ willingness to pay for insurance, whilst reducing farmers’ risk exposure, thus 
offering a potential mechanism to lower insurance premiums. Although longer-term impact evaluations 

around this approach are needed to shed light on the question whether this approach can indeed enhance 

technology adoption, providing extension agents with eyes on the ground through the smartphone 

images appears to be a promising strategy to increase the reach, relevance, and timeliness of extension 

and advisory systems. 
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Appendix  
Table A1. Descriptive statistics 

  N Mean SD Data source 
Covariates         
Age in years (as of June 2018) 3266 34.179 12.497 All participating farmers 

Total number of acres farmed 3266 6.164 7.222 All participating farmers 

Farmer education: 10-14 years/High school 3266 0.575 0.494 All participating farmers 

Farmer education: 0-10 years/up to Middle school 3266 0.257 0.437 All participating farmers 

Farmer education: 14+ years/Higher education"= 3266 0.168 0.374 All participating farmers 

Does not identify as forward caste 3266 0.257 0.437 All participating farmers 

Uses mobile phone to seek agricultural advisory 3266 0.108 0.311 All participating farmers 

     
Outcomes     

No. of sites registered in Wheatcam application 1798 1.164 0.868 

Participating farmers in 

Treatment 

No. of repeat pictures sent in Wheatcam 

application 1798 5.344 9.610 

Participating farmers in 

Treatment 

No. of approved repeat pictures send in 

Wheatcam application 1798 4.701 8.673 

Participating farmers in 

Treatment 

Average repeat pictures sent per site 1798 3.237 5.252 

Participating farmers in 

Treatment 

Knowledge score (0-5) 529 1.095 0.910 Surveyed at endline 

Use recommended herbicide 529 0.883 0.322 Surveyed at endline 

Used recommended pesticide 529 0.238 0.426 Surveyed at endline 

Reported damage from pest or disease 529 0.053 0.224 Surveyed at endline 

Reported damage from weather-related causes 529 0.616 0.487 Surveyed at endline 

Reported any damage to wheat crop 529 0.645 0.479 Surveyed at endline 

Yield : Self-reported (in quintals per acre) 499 18.822 4.082 Surveyed at endline 

Yield : CCE (in quintals per acre) 430 19.275 4.603 

Subsample of surveyed at 

endline 
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Table A2: Balance table – All participating farmers 

 Control PBA PBI Difference 

Variable 
N 

Mean/ 
SE 

N 
Mean/ 
SE 

N 
Mean/ 
SE 

C vs T^ 
PBA vs 
PBI^^ 

                  
No. of acres farmed 1468 6.989 801 5.343 997 5.608 1.499*** -0.265 

 

 
[0.423] 

 
[0.594] 

 
[0.457] 

  

Main occupation is agriculture 1468 0.927 801 0.984 997 0.974 -0.051*** 0.010 

 

 
[0.015] 

 
[0.005] 

 
[0.006] 

  

Farmer age 1468 37.114 801 31.431 997 32.063 5.333*** -0.632 

 

 
[0.935] 

 
[0.681] 

 
[0.530] 

  

Farmer education: 10-14 years 

(High school) 

1468 0.524 801 0.623 997 0.611 -0.092*** 0.012 

 

 
[0.027] 

 
[0.027] 

 
[0.026] 

  

Farmer education: 0-10 years  

(Primary/Middle school) 

1468 0.392 801 0.141 997 0.150 0.246*** -0.009 

 

 
[0.030] 

 
[0.019] 

 
[0.016] 

  

Farmer education: >14 years  

(Higher education) 

1468 0.084 801 0.236 997 0.239 -0.154*** -0.003 

 

 
[0.013] 

 
[0.023] 

 
[0.020] 

  

Does not identify as forward 

caste 

1468 0.217 801 0.270 997 0.305 -0.072* -0.035 

 

 
[0.040] 

 
[0.072] 

 
[0.045] 

  

Used mobile phone often to 

receive advisories 

1466 0.528 801 0.396 997 0.178 0.253*** 0.218**

* 
  [0.052]  [0.061]  [0.033]   
Controls for district fixed effects. Standard errors in parentheses clustered by unit of randomization (cluster). 
The value displayed for t-tests are the differences in the means across the groups. C vs T tests for difference in 
means between control farmers and treatment farmers (PBA/PBI). PBA vs PBI compares means between 
farmers in the two treatment groups. ***, **, and * indicate significance at the 1, 5, and 10 percent critical 
level. 
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Table A3: Balance table – Endline sample 

 Control PBA PBI Difference 

Variable 
N Mean/SE N Mean/SE N Mean/SE C vs T^ 

PBA vs 
PBI^^ 

                  
No. of acres farmed 50 4.680 160 8.744 319 6.602 -2.637** 2.142 

 

 
[0.476]  [0.753]  [0.369]   

Main occupation is 

agriculture 

50 
0.880 160 0.994 319 0.969 

-

0.097*** 
0.025 

 

 
[0.046]  [0.006]  [0.010]   

Farmer age 50 36.040 160 34.188 319 34.972 1.330 -0.784 

 

 
[2.272]  [0.858]  [0.635]   

Farmer education: 10-14 

years 

(High school) 

50 

0.560 160 0.588 319 0.592 -0.031 -0.005 

 

 
[0.071]  [0.039]  [0.028]   

Farmer education: 0-10 

years  

(Primary/Middle school) 

50 

0.240 160 0.181 319 0.179 0.060 0.003 

 

 
[0.061]  [0.031]  [0.021]   

Farmer education: >14 years  

(Higher education) 

50 
0.200 160 0.231 319 0.229 -0.030 0.002 

 

 
[0.057]  [0.033]  [0.024]   

Does not identify as forward 

caste 

50 
0.160 160 0.125 319 0.248 -0.047 

-

0.123*** 

  
 

[0.052]   [0.026]   [0.024]     

Used mobile phone often to 

receive advisories 

50 
0.5 160 0.537 319 0.245 0.158*** 0.293 

  [0.071]  [0.040]  [0.024]   

Controls for district fixed effects. Standard errors in parentheses clustered by unit of randomization (cluster). The 
value displayed for t-tests are the differences in the means across the groups. C vs T tests for difference in means 
between control farmers and treatment farmers (PBA/PBI). PBA vs PBI compares means between farmers in the 
two treatment groups. ***, **, and * indicate significance at the 1, 5, and 10 percent critical level. 
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Table A4: Control farmers – Comparison between the full sample and comparative sample 
 

Control - All other Control - Endline 
interviewed 

Difference 

Variable 
N Mean/SE N Mean/SE 

Full vs  
Comparative 

            
No. of acres farmed 1418 7.070 50 4.680 2.390***   

[0.440] 
 

[0.468] 
 

Main occupation is agriculture 1418 0.929 50 0.880 0.049   
[0.016] 

 
[0.045] 

 

Farmer age 1418 37.152 50 36.040 1.112   
[0.955] 

 
[2.400] 

 

Farmer education: 10-14 years 

(High school) 

1418 0.523 50 0.560 -0.037 

  
[0.029] 

 
[0.062] 

 

Farmer education: 0-10 years  

(Primary/Middle school) 

1418 0.398 50 0.240 0.158*** 

  
[0.031] 

 
[0.051] 

 

Farmer education: >14 years  

(Higher education) 

1418 0.080 50 0.200 -0.120* 

  
[0.013] 

 
[0.054] 

 

Does not identify as forward caste 1418 0.219 50 0.160 0.059   
[0.042] 

 
[0.041] 

 

Used mobile phone often to receive 

advisories 

1416 0.529 50 0.500 0.029 

 

 
[0.053] 

 
[0.074] 

 

Controls for district fixed effects. Standard errors in parentheses clustered by unit of randomization (cluster). 
The value displayed for t-tests are the differences in the means across the groups. C vs T tests for difference in 
means between control farmers and treatment farmers (PBA/PBI). PBA vs PBI compares means between 
farmers in the two treatment groups. ***, **, and * indicate significance at the 1, 5, and 10 percent critical 
level. 
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Appendix A5. Knowledge Questions administered at endline 

1. What weedicide can you apply if you see this weed in your field? (based on content disseminated 

through PBA and generic IVR/SMS) 

a) Phenoxodyn or Phenoxypropyethyl (Axil or Puma Power) 

b) Metsulfuran and Iodosulfuran  

c) Metsulfuran and Sulfosulfuran (Total) 

d) Accord Plus 

e) Metribuzin  

f) 2,4-D (Kill Out)  

g) Glyphosate (Roundup) 

h) Other 

i) Do not know 

Correct answer: (e) and (f) 

2. What weedicide can you apply if your weeds are not destroyed even after application of 2,4-D? (based 

on content disseminated through PBA and generic IVR/SMS) 

a) Algrip 

b) Affinity  

c) Metribuzin 

d) Glyphosate (Roundup) 

e) Other 

f) Do not know 

Correct answer: (b) 

3. What is the recommended harvesting method if there is rain before harvest and your crops are moist? 

(based on content disseminated through PBA and generic IVR/SMS) 

a) Use combine harvester 

b) Harvest by hand  

c) Other 

d) Do not know 

Correct answer: (b) 

4. If your land is saline, what wheat seed variety can you use to better your yields? (based on content 

disseminated through PBA only) 

a) KRL-210  

b) HD2967 

c) WH1105 

d) PBW550 

e) Other 

f) Do not know 

Correct answer: (a) 
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5. If you can irrigate your field 3 times in the season, which are the appropriate stages for irrigation? 

(based on content disseminated through PBA only) 

a) Crown root, heading, milking  

b) Crown root, tillering, Anthesis/flowering 

c) Tillering, Anthesis/flowering, milking 

d) Booting, Anthesis/flowering, milking 

e) Other 

f) Do not know 

Correct answer: (a) 
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Table A6. Adoption - Robustness check using 30-day window between advisory and input use 

  (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES 

Applied 
Weedicide 

Applied 
Weedicide 

Applied 
Nutrient 

Applied 
Nutrient 

Irrigated 
field 

Irrigated 
field 

Applied 
Pest/Fungicide 

Applied 
Pest/Fungicide 

Weedicide advice (SMS/IVR) 0.0261 0.0412  0.0214  0.00751  -0.0168 

 (0.0344) (0.0372)  (0.0306)  (0.0389)  (0.0255) 

Nutrient advice (SMS/IVR)  -0.0701 0.0176 -0.0219  0.0755  0.0266 

  (0.0449) (0.0445) (0.0475)  (0.0587)  (0.0378) 

Irrigation advice (SMS/IVR)  0.0356  0.0833 0.0491 0.00676  -0.0126 

  (0.0496)  (0.0627) (0.0483) (0.0582)  (0.0406) 

Pest/Fungicide advice 

(SMS/IVR)  0.0251  0.0753  -0.0562 0.00105 0.00467 

  (0.0407)  (0.0482)  (0.0488) (0.0507) (0.0508) 

Weedicide advice (PBA) -0.0188 -0.00499  0.0563  -0.0389  0.0287 

 (0.0337) (0.0341)  (0.0346)  (0.0459)  (0.0258) 

Nutrient advice (PBA)  -0.0367 0.0223 0.00791  -0.0406  -0.00246 

  (0.0416) (0.0432) (0.0433)  (0.0496)  (0.0425) 

Irrigation advice (PBA)  -0.180**  -0.201 -0.0410 -0.0896  -0.190 

  (0.0872)  (0.152) (0.176) (0.211)  (0.173) 

Pest/Fungicide advice (PBA)  0.102  -0.0783  0.134* 0.155 0.162 

  (0.117)  (0.0990)  (0.0800) (0.135) (0.140) 

Observations 2,778 2,778 2,778 2,778 2,778 2,778 2,778 2,778 

R-squared 0.267 0.269 0.348 0.351 0.255 0.257 0.293 0.294 
Robust standard errors in parentheses. Coefficients for week-wise time dummies and intercept hidden for readability. ***, **, and * indicate significance at the 1, 5, and 10 percent critical 

level. 
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